Article Title: Assessment of the Impact of Dysprosium Ion Doped Magnesium Sulfoborate Glass System on Gamma Radiation Shielding Parameters
Volume Number: 1
Issue: 1
Year: 2025
Article Type: Original Article
Author Names: M Abubakar and I Ahmad
Page Number: 28-36
PDF: [Download]
DOI: https://doi.org/10.64368/ejeti.vol.1.issue1.3
Affiliations:
1Department of Physics, Faculty of Physical Sciences, Bayero University Kano, Nigeria
*Correspondence: Dr. M Abubakar, Department of Physics, Faculty of Physical Sciences, Bayero University Kano, Nigeria; Email Address: abubakaryung@gmail.com
Keywords: Sulfoborate Glass; Gamma Radiation; Shielding; Phy-X/PSD; Attenuation Coefficients
Abstract: Lead-based materials have traditionally served as the primary gamma radiation shielding agents. However, their environmental toxicity and health hazards necessitate the development of safer alternatives. This study evaluates the gamma radiation attenuation properties of dysprosium oxide (Dy₂O₃) doped magnesium sulfoborate glass systems. Using Phy-X/PSD and XCOM software, simulations were carried out for four compositions: A1 (3 wt% Dy₂O₃), A2 (5 wt%), A3 (7 wt%), and A4 (9 wt%) over photon energies ranging from 0.015 MeV to 15 MeV. Key shielding parameters including Mass Attenuation Coefficient (MAC), Linear Attenuation Coefficient (LAC), Half-Value Layer (HVL), Mean Free Path (MFP), and Effective Atomic Number (Zeff) were calculated and compared. Results revealed that sample A4 exhibited the highest shielding performance at low photon energies, with a MAC of 0.173 cm²/g, HVL of 3.85 cm, MFP of 5.75 cm, and Zeff of 12.18 at 0.1 MeV. Attenuation coefficients for all samples decreased sharply up to 3 MeV and plateaued at higher energies due to the dominance of Compton scattering and pair production. The close agreement between Phy-X/PSD and XCOM results validates the simulations. This research supports the potential of Dy-doped glass systems as eco-friendly radiation shielding materials for medical, industrial, and nuclear applications.
References:
1. Kilicoglu O, Akman F, Ogul H, Agar O, Kara U. Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiat Phys Chem. 2023;204:110676. doi:10.1016/j.radphyschem.2022.110676.
2. Kurudirek M, Alajerami YS, Drabold D, Mhareb M, Cimatu KLA, Chen G. Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. J Eur Ceram Soc. 2020;40(10):3503–12. doi:10.1016/j.jeurceramsoc.2020.02.050.
3. Kurtulus R, Kavas T. Calculation of LAC and HVL values of newly developed barium-borotellurite glass containing different heavy metal oxides using Phy-X/PSD. Pamukkale Univ J Eng Sci. 2022;28(7):971–6. doi:10.5505/pajes.2021.74184.
4. Al-hadeethi Y, Sayyed MI. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram Int. 2019;45(18):24858–64. doi:10.1016/j.ceramint.2019.08.234.
5. Sharma S, Vo L, Pfeifer MP, Dunn WL, McNeil WJ, Bahadori AA. Bulk material interrogation experimental results and validation with Geant4 for replacement of dangerous radiological sources in oil-well logging industries. Appl Radiat Isot. 2021;170:109602. doi:10.1016/j.apradiso.2021.109602.
6. D’Souza AND, Sharmila K, Gaikwad DK, Sayyed MI, Somashekarappa HM, Al-Ghamdi H, et al. Evaluation of bismuth added HMO glasses in terms of thermal, mechanical, gamma radiation shielding and thermoluminescence properties. J Mater Sci Mater Electron. 2021;24(6). doi:10.1007/s10854-021-05432-7.
7. Rajendran KGV, Palanivelu N, Chaudhuri BK. Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements. J Non-Cryst Solids. 2003;320(1–3):195–209. doi:10.1016/S0022-3093(03)00018-8.
8. Cheewasukhanont EW, Limkitjaroenporn P, Kaewkhao J. Calculation of the radiation shielding parameters in long ranges of photon energy: Bismuth sodium borate glass. J Phys Conf Ser. 2020;1485:012027. doi:10.1088/1742-6596/1485/1/012027.
9. Hendi AA, Rashad M, Sayyed MI. Gamma radiation shielding study of tellurite glasses containing V2O5 and Bi2O3 using Geant4 code. Ceram Int. 2020;46(18):28870–6. doi:10.1016/j.ceramint.2020.08.053.
10. Agar O, et al. Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Results Phys. 2018;11:11–7. doi:10.1016/j.rinp.2018.11.054.
11. Erdem Ş, Özgür F, Al B, Sayyed MI, Kurudirek M. Phy-X/PSD: Development of a user friendly online software for cal-culation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem. 2020;166:108496. doi:10.1016/j.radphyschem.2019.108496.
12. Azuraida MK, Hlimah A, Sidek AA, Iskandar ANSM, Ishak M. Comparative studies of bismuth and barium boro-tellurite glass system: Structural and optical properties. Adv Mater Res. 2015;12(10):497–503.
13. Sakar E, Özpolat ÖF, Alım B, Sayyed MI. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem. 2020;166:108496. doi:10.1016/j.radphyschem.2019.108496.
14. Jamal N, Natasha M, Aida N, Amin B. Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Phys Med. 2020;78:48–57. doi:10.1016/j.ejmp.2020.08.017.
15. Hussein KJA, Alqaahtani MS, Meshawi AA. Evaluation of the radiation shielding properties of a tellurite glass system modified with sodium oxide. Materials (Basel). 2022;15(9):1–15. doi:10.3390/ma15093342.
16. Kaur TS, Singh D. Heavy metal oxide glasses as gamma rays shielding material. Nucl Eng Des. 2016;307:364–76. doi:10.1016/j.nucengdes.2016.07.029.
17. Kumar A, Gaikwad DK, Obaid SS, Tekin HO, Agar O, Sayyed MI. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+x)PbO–10WO3–10Na2O–10MgO–(40-x)B2O3 glasses. Prog Nucl Energy. 2020;119:103047. doi:10.1016/j.pnucene.2019.103047.
18. Abu M, et al. The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. J Mater Res Technol. 2020;9(4):8429–38. doi:10.1016/j.jmrt.2020.05.113.
19. Jamal N, Aida N, Amin B. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat Phys Chem. 2019;165:108439. doi:10.1016/j.radphyschem.2019.108439.
20. Almuqrin AH, Sayyed MI. Gamma ray shielding properties of Yb3+-doped calcium borotellurite glasses. Appl Sci. 2021;11(12):5697. doi:10.3390/app11125697.
21. Tuscharoen WCS, Kaewkhao J, Limsuwan P. Structural, optical and radiation shielding properties of BaO-B2O3-rice husk ash glasses. Procedia Eng. 2012;32:734–9. doi:10.1016/j.proeng.2012.02.005.
22. Dalhatu SA, Deraman K, Hussin R. Physical and optical properties of magnesium sulfoborate glasses doped with Dy3+ ions. Int J Mod Phys B. 2016;30(10):1650054. doi:10.1142/S0217979216500545.
Tetron Publications, focused on publishing scholarly works, is driven by the mission to ‘Empower Knowledge, Foster Growth, and Shape the Future‘.